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Abstract
In this paper we consider the relativistic polarization of a moving magnetic
dipole and show that this effect can be understood via the relativistic
generalization of Kirchhoff’s first law to a moving closed circuit with a
steady current. This approach allows us to better understand the law of
relativistic transformation of four-current density when it is applied to the
moving macroscopic magnetic dipoles.

1. Introduction

It is known that many laws of fundamental physics may admit various paths to their derivation,
and the awareness of all such paths is helpful for better understanding the physical meaning of
these laws. In addition, a finding of any novel way to prove the validity of any law may enrich
its comprehension and thus its perceived physical content, and it is certainly very useful from
an educational viewpoint, both for undergraduate and graduate students. The present paper is
directed in the first instance to these students.

In the following, we propose to consider the law of relativistic polarization of a moving
magnetic dipole, focusing our attention on the well-known relationship of this effect with
the relativistic transformation of four-current density in a circuit carrying a steady current.
We show that the popular approach suggested by Feynman [1] consisting in associating the
transformation in question with the scale contraction effect in a moving straight wire is, in
general, insufficient for a full understanding of the relativistic polarization of moving magnetic
dipoles. In particular, we additionally involve Kirchhoff’s first law generalized to a moving
closed circuit and show that the law of conservation of total charge for such a circuit leads
to its polarization in an inertial frame, wherein the circuit is moving with the non-vanished
constant velocity (section 2). Finally, in section 3 we further discuss the physical meaning of
the results obtained.
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2. On the dipole moment of a moving loop carrying a steady current

As known, the motion of a magnetic dipole with velocity v and magnetic moment μ induces
the appearance of an electric dipole moment

p = v × μ

c2
(1)

in the inertial frame of observer K, where c is the light velocity in vacuum. Equation (1) can
be characterized as the relativistic polarization of a magnetic dipole, and it follows from the
transformation of the polarization–magnetization tensor (see e.g. [2]). The physical meaning
of equation (1) is discussed in a number of books and papers from different viewpoints (e.g.
[2–4]).

Formally, equation (1) can be obtained from the Lorentz transformation of the charge
density ρ and current density j, constituting a four-vector, which in the one-dimensional case
takes the form

jx = γ (j0x + ρ0v), (2)

ρ = γ

(
ρ0 +

j0xv

c2

)
, (3)

where j 0x, ρ0 are measured in the inertial frame K0, moving at constant velocity v along the
x-axis of a laboratory frame K, and γ = 1/

√
1 − v2/c2 is the Lorentz factor.

Indeed, let us apply equation (3) to a neutral conductive rectangular loop with a steady
current I, lying in the x-y plane and moving at the constant velocity v{v, 0, 0} (see figure 1).
We adopt the following notation:

ρ0 is the total charge density of segments of the loop in its rest frame K0;
j 0 is the current density in the loop for an observer in the frame K0;
I is the current in the loop for an observer in K0;
ρ0e is the charge density of conduction electrons in the wire of the loop in K0;
ρ0+ is the charge density of positive ions in the wire of the loop in K0;
l0 is the length of the segment of the loop in K0;
S0 is the area of the cross section of the conducting wire of the loop in K0;
u0 is the flow velocity of conduction electrons in K0;
ρdown, ρup, ρleft, ρright are the total charge densities in the down, upper, left and right
segments of the loop, respectively, as viewed by the laboratory observer K;
ρ+ is the charge density of positive ions in the wire of the loop in the laboratory frame K;
(ρdown)e, (ρup)e, (ρleft)e, (ρright)e are the charge densities of conduction electrons in
corresponding segments of the loop in the frame K;
Sdown, Sup, Sleft, Sright are the areas of the cross section of the conducting wire for
corresponding segments of the loop in the frame K;
Qup, Qdown are the charges of the upper and down segments of the loop, respectively, in
the frame K;
udown, uup, uleft, uright are the flow velocities of conduction electrons in the corresponding
segments of the loop in the frame K;
p is the electric dipole moment of the loop in the frame K.

Thus in the adopted designation, the proper magnetic moment of the loop takes the form
μ0z = I l2

0 .
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Figure 1. Rectangular conducting loop lying in the x-y plane moves at constant velocity v along
the x-axis of the laboratory frame K. A proper length of each segment of the loop is equal to l0, the
proper area of the cross section of the conducting wire is S0. The proper magnetic moment of the
loop is equal to μ0 = I l2

0 and lies in the negative z-direction, where I is the current to be measured
in the rest frame of the loop. The length and cross-sectional area of each section of the moving
loop are shown in bold. We also show contraction of the filaments of conduction electrons (dotted
lines) in various sections of the moving rectangular loop according to [5].

Since in the rest frame of the loop ρ0 = 0, equation (3) yields

ρdown = −γj0v

c2
, (4)

ρup = γj0v

c2
, (5)

ρleft = ρright = 0, (6)

where j0 = I/S0. Hence the electric dipole moment of the moving loop becomes

py = Qup − Qdown

2
l0, (7)

where Qup (Qdown) is the electric change of the upper (down) segment of the moving loop.
Insofar as Qup = ρupS0

l0
γ

, Qdown = ρdownS0
l0
γ

, based on (4) and (5), we obtain

py = Qup − Qdown

2
l0 = γj0v

c2

S0l0

γ
l0 = vμ0z

c2
, (8)

which is the particular case of equation (1) for the orthogonal μ and v.
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This derivation of equation (1) is present in many textbooks, but it does not clarify the
physical meaning of equations (2) and (3). Panofsky and Phillips [2], as well as Rosser [3]
explain these equations through the relativity of simultaneity of events in different inertial
frames. This is a correct but rather formal explanation. Feynman in his lectures [1]
demonstrates the validity of transformations (2) and (3) for the particular case where a very
long straight wire with a steady current is moving along its axis at the constant velocity v.
He involves the relativistic effect of length contraction, paying attention to the fact that for a
laboratory observer the velocities of positive ions (composing the lattice of wire) and negative
conduction electrons differ from each other due to the flow of these electrons along the wire.
Hence, the length contraction effect is also different for the negative and positive charges and
as a result, the wire acquires the non-zero net charge according to equation (3). At the same
time, Feynman did not mention that his analysis is relevant for a model problem, dealing
with the artificial infinitely long wire. Maybe this circumstance explains why some authors
continue to apply the same line of reasoning to moving finite-size closed circuits carrying a
steady current.

In a consistent way, the idea of explaining the transformations (2) and (3) via the length
contraction effect in a current loop has been analysed in [5]. The author of [5] observed that the
velocity of the conduction electrons, constituting the current I, exceeds v in the down section
of the circuit, but is less than v in the upper section. (From now on, we take into account that
the direction of the flow velocity of conduction electrons is opposite to the direction of the
current shown in figure 1.) Hence, he obtained that the length of the filament of current in the
down section is l0

(
1 − (v+u0)

2

2c2

)
, while in the upper section, it is l0

(
1 − (v−u0)

2

2c2

)
to an accuracy

of the order c−2, where u0 is the flow velocity of conduction electrons in the rest frame of the
loop. Correspondingly, the charge density of conduction electrons in the down section is

(ρdown)e = ρ0e

1 − (v+u0)2

2c2

,

whereas in the upper section it becomes

(ρup)e = ρ0e

1 − (v−u0)2

2c2

,

where we have introduced the charge density of conduction electrons ρ0e in the rest frame
of the loop. In this way, Blackford also arrived at equations (2) and (3) and finally at
equation (1), at least within the accuracy of the calculations c−2. However, in our opinion,
this way of reasoning is unphysical. One can see that within such an approach, the corners of
the circuit represent the points of discontinuity of current (figure 1); besides, the length of the
filament of current in the upper section becomes inadmissibly longer than the length of this
section itself.

At the same time, there is a simple and, in our opinion, physically correct way to derive
equation (1), which is based on Einstein’s law of velocity composition and Kirchhoff’s first law
extended to relativistically moving circuits. First, we determine the velocities of conduction
electrons along each segment of the loop, as seen by a laboratory observer, applying Einstein’s
law of velocity composition:

(udown)x = v + u0

1 + u0v/c2
, (9)

(uup)x = v − u0

1 − u0v/c2
, (10)

(uleft)y = −u0

γ
, (11)
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(uright)y = u0

γ
. (12)

Now consider a flow of current, for example, near the lower-right corner of the loop. Since
no charge is accumulated on this corner, we conclude that during a unit time interval, a
number of conduction electrons entering into this corner from the down side of the loop
((ρdown)e((udown)x − v)Sdown) is equal to the number of electrons leaving this corner and
entering into the right side ((ρright)eurightSright). Equating these quantities, we obtain a
relativistic generalization of Kirchhoff’s first law:

(ρdown)e((udown)x − v)Sdown = (ρright)e(uright)ySright, (13)

which in its physical meaning represents the continuity equation for the conduction electrons.
Further on, we take into account that due to the scale contraction effect, Sdown/Sright = γ ,

and insert the expressions for (udown)x (equation (9)) and (uright)y (equation (12)) into
equation (13). Then, one obtains

(ρdown)e = (ρright)e(1 + u0v/c2). (14)

Applying Kirchhoff’s first law to the upper-right corner of loop, we derive in a similar way

(ρup)e = (ρright)e(1 − u0v/c2). (15)

Analogously, for the upper-left corner we obtain

(ρup)e = (ρleft)e(1 − u0v/c2). (16)

Now let us compute the total charge Q of conduction electrons in the loop, which is the
invariant quantity

(ρdown)eS0
l0

γ
+ (ρright)e

S0

γ
l0 + (ρup)eS0

l0

γ
+ (ρleft)e

S0

γ
l0 = Q = 4ρ0eS0l0. (17)

(We have taken into account that in the rest frame of the loop Q = 4ρ0eS0l0.) Combining
equations (14)–(17), we obtain

(ρright)e = (ρleft)e = γρ0e, (18)

which agrees with the transformation rule (3) for jx = 0.
The charge density for positive ions has the value

ρ+ = γρ0+ (19)

in all the segments of the moving loop, where ρ0+ is measured in its rest frame K0.
The equations (14)–(19) allow us to determine the total charge density ρ in each segment

of the loop, if we take into account that ρ0e + ρ0+ = 0:

ρdown = −γρ0e

u0v

c2
, ρup = γρ0e

u0v

c2
, ρleft = ρright = 0.

The total charges of the down and upper sections are

Qdown = ρdownS0
l0

γ
= −I l0

c2
, Qup = ρupS0

l0

γ
= I l0

c2
.

Inserting these values into equation (7), we arrive at equation (1).
In a similar way, one can show the validity of equation (1) for the case where the vectors

v and μ are not collinear with each other.
The presented derivation of equation (1) can be directly extended to a plain circuit of

arbitrary shape, because a flat area enclosed by the circuit can always be divided into a large
number of sufficiently small rectangular circuits, where the currents mutually cancel each
other for neighbouring sections. Thus, a non-compensated current is present only on the
boundary of the area, that is, in the plain circuit. Hence, consistently applying equation (1)
to each of the small rectangular elements, we arrive at equation (1) for the entire circuit in
question.
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3. Conclusion

We have shown that the electric polarization of a moving classical magnetic dipole can
be understood on the basis of the relativistic generalization of Kirchhoff’s first law to a
closed circuit via involving Einstein’s law of speed composition. Due to the latter law, for a
laboratory observer, the difference of the velocities (�v) of a closed circuit as a whole, and
conduction electrons flowing in the circuit do not coincide, in general, with the flow velocity
of these electrons in the proper (rest) frame of the circuit. In particular, for the case shown in
figure 1, the modulus of �v is larger in the top section of the circuit than in its bottom section.
Therefore, due to the continuity equation for the conduction electrons (being expressed via
Kirchhoff’s first law), the charge density of conduction electrons must be larger in the bottom
section in comparison with the top section, as viewed by a laboratory observer. Hence we get
the electric polarization of the moving circuit in a laboratory reference frame.

At the fundamental level, this effect is rooted, of course, to the relativity of simultaneity
of events in different inertial frames, as mentioned in the books by Panofsky and Phillips [2],
Rosser [3], as well as in other textbooks.

At the same time, our classical derivation of equation (1) cannot be directly applied to the
particles with spin (electron, neutron, etc): in this case we just have to adopt, as a universal
relativistic result, that a moving particle with the magnetic moment μ has the electric dipole
moment p in the frame of observation.
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